Core Knowledge	Autumn	Spring	Summer	Autumn	Spring	Summer	Autumn	Spring	Summer
	Number Find common factors of numbers and the highest common factors Division with remainders expressed as a fraction , BIDMAS - applying to integers and decimals $+/$ and x or $/ \div$ Geometry Identify properties of the faces, surfaces, edges and vertices of shapes Measurement of various shapes areas and perimeters including links to algebra for various shapes Ratio, proportion and rates of change - Explore ratio and idea of part to part, including notation and links to fractions - Application of metric conversions Statistics and Probability - Interpret and understand scales - Create and interpret pie \& pie charts Algebra Understand basic algebraic notation including characteristics of formala's, and expressions. - Understanding when and how to expand single brackets - Understand how to collect like terms	Geometry Recognise and solve problems involving vertically opposite angles Exploring and solving problems involving angles on a straight line Understand how the volume of a cube or cuboid relates to area. Understand the properties of a prism Naming both the x and y axis. -Performing simple enlargement, reflection, rotation and translation \qquad Conversion of units including time Statistics and probability - Gain an understanding of range, median, range and mode for simple data Algebra - Understand the difference between an expression, equation and formula - Interpret expressions as functions with inputs and outputs - Create and use a formula - Solving simple one and two step equations	Number Understanding negative numbers in context i.e. temperature Convert improper fractions to mixed number fractions and vice versa Ordering fractions including different formats i.e. fractions, percentages and decimals Geometry Know and understand $y=x, y=-x$ and using these lines to reflect in. Know and understand naming of lines that are parallel to an axis Ratio, proportion and rates of change - Introduction of speed Understand the unitary method Statistics and probability - The language of probability Simple theoretical probability as a fraction Probability as a decimal or percentage Algebra Plotting \& drawing a line given an equation with substitution. The language of sequences Generating a sequence and finding the nth term	Number Prime factorisation of integers The use of standard form for writing large and small numbers Writing inequalities on a number line with the correct notation Ratio, proportion and rates of change Sharing an amount using a ratio Calculating speed, distance and time depending on given values Geometry Properties of a circle Constructions of triangles with a compass Drawing nets of more complicated 3d shapes such as prisms and pyramids Exploring angles in special triangles and parallelograms Algebra Expanding harder single brackets and solving them Reading and writing inverse function machines substituted ilations which have been Statistics into with values - Finding averages from frequency tables Creating and using stem and leaf diagrams to find averages	Algebra Solve (balance) equations with one unknown and one pair of brackets Solving (balance) equations with fractions i.e. $1 / 3 x=5$ Extend to solving with unknowns on both sides i.e. $2 x+3=3 x-2$ Geometry two mirror lines Enlargement with centre off the shape and off with positive scale factors Ratio, proportion and rates of changes - Develop upon and use the unitary method elution unitary method to find "best buy" Number Using calculator recurring symbol Write a terminating decimal as a fraction Statistics and probability - Present/interpret data in compound/comparative bar charts Draw LOBF: describe the correlation.	Geometry ompound shapes using FSS Total surface area of prisms including triangular prisms using FSS Combining transformations which can also be written as a single transformation. Statistics and probability Using Venn diagrams to find probabilities Listing outcomes using a sample space diagram Theoretical multiple event probability using fractions $\frac{\text { Algebra }}{- \text { Use sub }}$ substitution to generate terms in a equence when given the nth term Look at common sequences that might numbers Number Discovering how to use a calculator with various functions such as squaring, cubing, fractions etc. - Using all four operations on decimals Ratio, proportion and rates of change Problem solving with proportion Introducing the concept of direct and nverse proportion. Solve worded problems with ratio	Number Being able to write a quantity as a raction, decimal or percentage of another quantity. - Finding a multiplier for the use of percentage increase or decrease. - Problem solving involving all four operations for whole numbers decimals and fractions $\frac{\text { Ratio, proportion and rates of change }}{\text { Maps and scale including }}$, metric Geometry - Know the formulae: circumference of a circle $=2 \pi r=\pi d$ and area of a circle $=\pi r^{2}$ Statistics and probability - Understanding averages from a discrete frequency table - Averages from a continuous data frequency table Algebra Understanding the laws of indices Expanding double brackets - State the gradient and y intercept when given an equation Draw a linear graph when given an equation using a table of values - Calculate the gradient of a straight line on a graph.	Algebra an equation to make a variable the subject. Generate a quadratic sequence when given the nth term Know the Fibonacci sequence and being able to create similar sequences Number - Writing any large number and any small number with standard form Using venn diagrams and prime actorisations to find the highest common factor or lowest common multiple of any number. - Construct a perpendicular bisector of a line and through a point - Bisect and angle - understand the definition of Loci and use it answer a question. - Interpret a graph or chart and to find sample sizes - Introduction to histograms - Probability trees with and without replacement. Ratio, proportion and rates of change - Finding Introducing graphs of proportionality	Number multiplier for percentage Finding arigplying it -Finding original values after a percentage increase or decrease Compare simple and compound interest for best options Geometry Angles in parallel lines with intersecting lines and the rules involved. Finding interior angles of polygons and nderstand how this relates to triangles. Finding exterior angles for polygons. Introduce bearings Algebra which depicts a hapes area, perimeter or volume - Solving an equation which depicts a shapes area, perimeter or volume Statistics and probability Finding the relative frequency from a set of data using inequalities Using relative frequency to calculate probabilities Introduction to experimental probability probabilities in experimental situations
Concepts	- Concept and vocabulary of prime numbers, factors divisorss, multiples and common factors, area \& perimeter, algebrai terms. - Concept of addition and subtraction with negatives, concept of multiplying terms - Conception of bar and pie charts as representing data - Concept of an unknown in algebra	- Concepts of relationships between intersecting lines and opposite angles - Concept of volume being an extension from area in cubes. - Concept of a transformation being a way to describe a shapes movement - Concept of inverse operations for solving equations	- Concept of mixed number fractions and improper being the same value - Concept of a fraction being the same as a percentage \& decimal - Concept of fairness and probability as a scale - Concept of a rule in sequences - Concept of calculated probability being theoretical	- Concept that any integer can be made, with multiplication, with prime numbers - Concept that powers of 10 can be used to make very large and very small numbers. - Concept that expanding brackets or factorising into brackets shows the same expression but in a different format	Concept that when solving an equation, an operation must happen to both sides of the = symbol to keep it balanced. Concept that a recurring decimal can be written in a simpler way - a fraction Concept that a line of best fit is an approximation and can be used for predictions.	- Concept that a 3d shape can have an area and not just a volume - Concept that a small range can show the reliability of data - Concept that a sequence can involve powers - Concept that multiple event outcomes will happen less than single event outcomes therefore the events need to be multiplied	- The concept that a decimal can be used to find a percentage easily. - The concept that any circle's circumference divided by its diameter will give a mathematical constant π - The concept that a map is a scaled down or up version of something far bigger or smaller.	- The concept that an equation or formula can be adapted with the balancing method. - The concept of equidistance by using compass points. - The concept that a histogram shows a range of values in each bar. - The concept thata a probability fraction changes if not replaced	- The concept that different interest types (compound and simple) are just as important as the interest rate multiplier. - The concept that alternate, corresponding and vertically opposite angles are the same - The concept that a inequality can be used for finding a probability .
	- Connections to other areas of maths such as algebra, geometry and statistics. - Connections to other subjects such as chemistry (balancing equations) and physics (calculating wavelength and frequency)	such as angles in parallel lines, comparing data and worded algebraic problems. - Connections to physics (reflection, refraction) and geography (population size)	Connections to other areas of maths such as using graphs to solve quations and direct \& inverse proportion. Connections to Chemistry, food tech and Physics (temperature affecting chemical structure)	Connections to other areas of maths such as quadratics in algebra and congruent \& similar triangles in geometry. Connections to Physics (standard form) and Geography (earthquakes foci and epicenter)	Connections to other areas of maths such as area, volume and perimeter \& enlargement with a negative scale factor Connections to biology (when using graphs when mapping the relationships between variables)	- Connections to other areas of maths such as algebra (formulas and quadratic sequences) and proportionality (equations of proportionality) - Connections to business studies and economics with proportion	- Connections to other areas of maths such as volume of a cone or sphere circle properties) and exponential growth (multiplier) - Connections to business, biology \& economics (exponential growth of capital and bacteria)	- Connections to other areas of maths such as quadratic; graphs, equations and sequences. - Connections tp physics when rearranging equation \& formula is used for finding voltage, current or different types of energy.	- Connections to other areas of maths such as circle theorems and trigonometric ratios. - Connections to PSHE with shopping (finding the best deal) and finding the best options for loans (interest rates).
	$>$	>	>		OGRESSIO		$>$	$>$	$>$
Post Connections	Write a number as a product of its prime factors, use standard form to write large numbers, use standard form to write small numbers, problem solving, calculating with time using number line, multiply and divide negative numbers, introduce of the calculator with time, properties of circles, compass work, nets of prisms and pyramids, plans and elevations.	Averages from a simple frequency table (introducing the notation of sigma), compare 2 distributions using median and range, averages from stem and leaf involves brackets, Using and writing of inverse machines, single and double, Substitution of negative numbers, including use of calculator with negative numbers.	Find the next term, a term missing in the middle of a sequence and explain why this is, given the line find the intercept and begin to find the gradient, Look at the common sequences - square/cube numbers, triangular numbers, listing outcomes: sample space diagrams, introduction theoretical probability of multiple events i.e. multiplication rule.	Write a number as a product of its prime factors, Use prime factorisations to find the highest common factor of two numbers, Name the angle rules in parallelogram, Perfect angle rule sentences, phrase interio angles and extend triangles/quadrilaterals to other polygons, Rearrange (Make the subject), substitution then rearrange/solve	Solve simple quadratics with $\mathrm{a}=1$, Solve simple simultaneous equations, Solve (balance) a basic inequality, Describe rotations, Describe reflection in two mirror Enlargement, translation and rotation, Find the centre of enlargement for positive scale factor, Use standard form on a scientific calculator including	Introduction of probability trees replacement leading to no replacements, use probability to calculate expected outcomes (relative frequency), Introduction of Enlargement sf as a fraction, Combinations of reflection, ranslation and rotation - describe resulting shape using a single, transformation exploring Pythagoras theorem	Simple and compound interest corporating exponential growth and decay, using bearings on maps incorporating constructions and igonometry, using box plots to show the range of a data set, using indices in conjunction with surds, use expansion of brackets for finding areas and volumes, using linear graphs to find solutions to simultaneous equations	Rearranging an equation or formula and applying it to find a solution, writing quadratic expressions, solving quadratic equations, using venn diagrams for problem solving, solving a linear and quadratic equation simultaneously, using probability trees and venn diagrams with non probability, experimental probability	Calculating with standard form including multiplying and dividing, Use calculation of standard form to find solutions to rea problems such as mass, density and conjunction with trigonometry, use rules for angles in parallelograms in conjunction with trigonometry and bearings.
Vocabulary	Face, Edge, Vertex (Vertices), Cube, Cuboid Prism, Cylinder, Pyramid, Cone, Sphere, owest common multiple and LCM, Highes cube root, Triangular number, Square number, Cube number, Prime number Improper fraction, Top-heavy fraction, Mixed number, Operation, Inverse, Long multiplication, Short division, Long division Remainder.	Face, Edge, Vertex (Vertices), Cube, Cuboid, Prism, Cylinder, Pyramid, Cone, Sphere, Lowest common multiple and LCM Highest common factor and HCF enlargement, translation, scale factor, centre of enlargement, centre of rotation, vector, median, mean, range, mode, functions, formula, solve, equation, balancing, inverse, function, operation.	Fraction, Mixed number, Top-heavy fraction, Percentage, Decimal, Proportion, Terminating, Simplify, Cancel,Plot, Equation (of a graph), Function, Formula, Linear, Coordinate plane, Gradient, Model, Kinematic, Speed, Distance, Ratio, Proportion, Proportional, Multiplier, Speed, Unitary method, Units, Compound unit unit	Degrees, Right angle, acute angle, obtuse angle, reflex angle, Vertically opposite, Paral, Alternate angles, corresponding angles, Interior angle, exterior angle, Regular polygon, Prime, Prime factor, Prime factorisation, Product, Venn diagram, multiple, Standard form, Significant figure, Inequality, Expression, Term, Formula Equation, Function, Variable	Prime, Prime factor, Prime factorisation, Product, Venn diagram, Highest common factor, Lowest common multiple, Standard form, Significant figure, Inequality, Unknown, Equation, Operation, Solve, Solution, Brackets, Symbol, Axis, axes, x-axis, y-axis, Origin, Quadrant, Translation, Reflection, Rotation, Transformation, Object, Image, Congruent, congruence, vector.	Negative number, Directed number, mproper fraction, Top-heavy fraction Mixed number, Inverse, Long multiplication, Square numbers, Cube numbers, Term, Difference, Term-to-term De, Position-to-term rule, Ascending, circumference, Pi (T), prism, Cross-section, Cylinder, Polygon, polygonal, Solid		Equation, Simultaneous equation, Variable Manipulate, Eliminate, Solve, Derive, nterpret, Term-to-term rule, nth term, Generate, Linear, Quadratic First (second) difference, Fibonacci number, Fibonacci sequence, Categorical data, Discrete data, Continuous data, Grouped data Axis, axes, Compound bar chart Scatter graph Scatter graph	Outcome, equally likely outcomes, vent, independent event, dependen event, Tree diagrams, Theoretical probability, Experimental probability, frequency, Enumerate Set, P(A), Equation, Formula, Formulae, Linear Expression, Quadratic, Interior, exterior, Alternate, co-interior, corresponding
Assessment								ssessmment, PuMA assessme	

Mathematics

\sim Key Stage 4		Year 12			Year 13	University Employment \leadsto
	Autumn	Spring	Summer	Autumn	Spring	Summer
GCSE Maths Grade 7 or above Core Knowledge	Statistics and Mechanics Use, select and critique sampling methods Interpret measures of central tendency, \& spread. Calculate variance and standard deviation and work with coding. Represent data with box plots, cumulative frequency and histograms. Compare data and understand outliers. Use and apply probability and understand probability distributions, binomial distributions and cumulative probabilities. Understand and apply the language of and conduct a statistical hypothesis testing.	$\frac{\text { Pure }}{U s e}$ Use and apply sine \& cosine rules and calculate the area of a triangle. Work with trigonometric identities and solve trigonometric equations. Use vectors in 2 dimensions, calculate magnitude, convert between different vector forms, use position vectors and solve vector Use differentiation in application to gradients tangents and normal, increasing \& decreasing functions, stationary points and modelling Integrate with definite and indefinite integrals and apply to the area under curve. Statistics and Mechanics Use modelling in mechanics to simplify problems. Understand the standard units used. raphs. distance-time and velocity-time graphs. Calculate and solve problems with the motion under gravity, Start to work with forces and motion in 2 dimensions extending to connected particles and pulleys.	Pure Understand exponential graphs and use them for modelling. Learn and apply the rules of logarithms, solve equations in logarithms and work with natural logarithms. Solve problems Statistics and Mechanics Use calculus in kinematics for motion in a straight line. Work with functions of time and apply differentiation, work with maxima and minima problems, use integration vectors and constant acceleration formula.	Pure Work with populations, samples, sampling and large data sets. Find the modulus of a linear function, work with composite functions and understand the effect of transformations on a function. Use functions in modelling. Work with tic and geometric sequences. Use arithmetic and geometric sequences. Use sum relations. Understand and use the binomial expansion and its use for approximation. Calculate with angles in radians and solve problems with sectors. Solve trigonometric equations and use small angle approximations. Understand and use the definitions of secant, cosecant and cotangent and of arcsin, arccos and arctan, work with and prove further identities, use double angle formulae and model with Trigonometric functions. Use and model with parametric equations. Statistics and Mechanics Work with exponential models, correlation and hypothesis testing for zero correlation. Explore conditional probability, transformations and modulus problem.	Pure Understand and use differentiation from first principles and use and apply a variety of new differentiation rules. Locate roots if $f(x)=0$, solve equations maty using iteration, use the Newton-Raphson method and applications to modeling. diand and use different integration knowledge to modelling with differential equations. Statistics and Mechanics Understand and use the normal distribution as a model and find probabilities. Use standard normal distribution and inverse normal distribution and conduct a statistical hypothesis Understand and use moments in simple stati contexts.	Pure Use vectors in 3 dimensions, solve geometric problems and make links to mechanics. Statistics and Mechanics Resolve forces in 2 dimensions, on inclined planes and with friction present. Model motion under gravity in a vertical plane using vectors; projectiles. Understand and use Newton's second and third law when working with statics of a particle. Solve problems with friction and rigid bodies. Solve problems with dynamics, inclined planes and connected particles. Extend the constant acceleration formulae of motion to 2 dimensions using vectors. Use calculus in kinematics for (variable acceleration) motion in a straight line. Extend to 2 dimensions using vectors.
Concepts	Pure Algebraic Expressions, Quadratics, Equations and Inequalities, Graphs and Transformations, Straight Line Graphs, Circles, Algebraic Methods. Statistics and Mechanics Data Collection, Measures of Location and Spread, Representations of Data, Correlation, The Binomial Expressions, Probability, Statistical, Distributions, Hypothesis Testing.	Pure Trigonometric Ratios, Trigonometric Identities and Equations, Vectors, Differentiation, Integration. Statistics and Mechanics Modelling in Mechanics, Constant Acceleration, Forces and Motions.	Pure Exponentials and Logarithms Statistics and Mechanics Variable Acceleration	Pure Algebraic Methods, Sequences and Series, Binomial Expansion, Radians, Trigonometric Functions, Trigonometry and Modelling, Parametric Equations, Differentiation Statistics and Mechanics Regression, correlation and hypothesis testing, Conditional probability, Numerical Methods, The Normal Distribution	Pure Integration Statistics and Mechanics Moments	Pure Vectors Statistics and Mechanics Forces and Friction, Projectiles, Applications of Forces, Further Kinematics.
Post Connections	Chapter 2 PURE A Level PURE, A Level Statistics \& Kinematics	AS Mechanics A Level Integration	A Level Mechanics	A Level Integration - Trigonometry A Level Mechcanics A Level statistics - binomial distribution.	Proof may also be tested throughout the specification through other topics e.g. trigonometry, series, differentiation, etc.	
	E $>$	>	$>$		$>$	
Other Connections	Pure Computer scientist use indices o describe very large numbers. A quantum computer with 1000 qubits (quantum bits) can consider 2^{1000} values simultaneously. This is greater than the number of particles in the observable universe. Food scientists use regions to graph and optimise athletes nutritional intake and ensure they satisfy the minimum dietary requirement for calories and vitamins. Straight Line graphs are used in mathematical modelling. Economists use straight line graphs to model how the price and availability of a good affect the supply and demand. Geostationary orbits are circular orbits around the Earth. Meteorologists use geostationary satellites to atmosphere. Statistics and Mechanics Wildlife biologist use statistics such as mean populations of endangered birds in different habitats Graphs and charts appear all the time in newspapers and magazines, often stylised to suit the nature of the article. Climate Scientists have demonstrated a strong rising atmospheric temperatures. Sports teams use past performance to estimate probabiities and plan strategies. In softball and baseball, a player's batting average is an estimate	Pure Trigonometry in both two and three dimension is used by surveyors to work out distances and areas trigonometry when working with vectors quantities in mechanics. Pilots use vector addition to work out the resultant vector for their speed and heading when a plane encounters a strong cross-wind. Engineers also use vectors to work out the resultant forces acting on Statistics and Mechanics Mechanics is the branch of mathematics which deals with the action of forces on objects. Mechanics can be used to answer questions about many familiar parachutist, the stresses in a bridge or the motion of the Earth around the Sun. \qquad having constant acceleration. You can use this to estimate the time it will take a cliff diver to reach the water The weight of an air-sea crew man is balanced by the tension in the cable. By modelling the forces in this situation, you	Pure earthquakes. Both the Richter scale and the newer moment magnitude scale use base 10 logarithms to moment magnitude scale use base express the size of seismic activity. Statistics and Mechanics A space rocket experiences variable acceleration during launch. The rate of change of velocity increase to enable the of the Earth.	Pure 保 prime in infite number of prime numbers. Very large transactions. Codebreakers at Bletchley Park used inverse functions to decode enemy messages during World War 11. When the enemy encoded a message they used a function. The code breakers' challenge was to find the inverse of that function that would decode the message. be used to and in nature, and can the spread of a population growth or decline, or Statistics and Mechanics Ice cream sellers typically find that they sell more ice cream the hotter the day. You can measure the strength of this correlation using the product moment correlation coefficient. The outcome of one event can team scores a goal, the probability that the will win the match will increase	Pure You can use differentitation tof find rotes of change in ticonometro trionomemetric and dexponential models. The velococty of a wrecking ball could be e estimated by modelling its displacement then differentititing. Integration can be used to solve differential Statistics and Mechanics distributions of physical istributions of physical characteristics, such as Moments measure the turning effects of a force Engineers use moments to work out how much load can be applied safely to a crane	Pure You can use vector to describe e elative positions in geemetrical 1 robblems in intrree dimmensions and Statistics and Mechanics A car's braking force is determined by its speed and frictional force between the car's wheels and the road. In wet or icy conditions, friction is reduced so the braking distance is increased. A particle moving in a vertical plane under the action of gravity is sometimes called a Projectile. You can use projectile motion to model the flight of a basketball. A tightrope walker uses a mathematical model to calculate the tension in his wire. This allows him to weight safely. Vectors are used to represent motion in two and three dimensions. The surface of the ocean can be modolled as a two-dimensional plane, and the velo ship can be described using a vector.
Vocabulary	Rationalise, turning point, discriminant, irrational, asymptote, coefficient, simultaneous, polynomial, quotient, root, exponent, quartic, infinity, bisect, factorise, stratified, quota, systematic, linear regression, interpercentile, skew, extrapolation, variance, deviation.	Interval, amplitude, period, identity, collinear, scalar product, modulus, first principles, normal, stationary, calculus, indefinite, intersection, modelling, inextensible, tension, thrust, friction, retardation, deceleration, gravity,	Exponential, exponent, logarithm, base, compound interest, Distance, displacement, variable acceleration, retardation, deceleration, differentiate, integrate, rate of change, with respect to time, constant of integration, initial conditions.	Validity, converges, diverges. Composite, domain, range, modulus. Series, finite, summations, sigma, periodicity, geometric progression. Partial fraction. Radian, interval, secant, cosecant, cotangent. Parametric Cartesian. Critical value, inference	Derivative, quotient, rate of change, inflexion, parametric, stationary point, turning point. Interval, iteration, Newton-Raphson, staircase, cobweb, trapezium rule. First order, by parts, reciprocal, indefinite. Position vector, orthogonal. Turning effect, centre of mass	Scalar, column, 3D coordinates. Cartesian, i, j, k, unit vector, orthogonal. Coefficient of friction, negligible, inextensible, equilibrium, limiting, tension, thrust. Gravity, angle of projection, acceleration, projectile, trajectory, parabola. Concurrent, coplanar, instantaneously.
Assessment	Baseline Assessment, Unit 1,2 \& 3 PURE Unit 1, 2, 3, 4 \& 5 Stats and Mechanics	Unit 4, 5, 6 \& 7 PURE Unit 6, 7 \& 8 Stats and Mechanics	Unit 8 PURE Unit 9 Stats and Mechanics	Unit 1, 2, 3, 3, 4, 5, 6 \& 7 PURE Unit 1 \& 2 Stats and Mechanics	Unit 8, 9,10 \& 11 PURE Unit 3 \& 4 Stats and Mechanics	Unit 12 PURE Unit 5, 6, 7 \& 8 Stats and Mechanics

${ }^{*}$ Key Stage 3			Year 10					Yea	11
	Autumn		Spring	Summer		Autumn		Spring	
	Collection of data	Processing and representing data	Summarising data	Scatter diagrams and correlation	Time series	Probability	Probability Distributions	Index Numbers	
Core Knowledge	Foundation Use Correct terminology to describe different types of data and know the difference between Know how to group rounded and unrounded data into class intervals or categories and the advantages and disadvantages of doing so. Understand population, sample and sample frame, and identify these for a given set of data different methods of random and non-random sampling, including the advantages of each. category Know the key features to consider when planning interviews and questionnaires. Wine and identity suitable Write a hypothesis and decide on suitable data to collect and test it. Design a data collection sheet, and collect data from different sources. Know the advantages of using a pilot study Know Possible constraints on an investigation and how to deal with Know potential problems with collected data and how to deal with them. Know how and why to clean data. Identify and control extraneous Higher Use the Pearson capture-recapture formula to estimate the size of a population and know the assumptions made when using the method category and by more than one category Use the random response method to sensitive questions. use control groups.	Foundation Select the appropriate representation to use ecide whether to group data into class intervals. Recognise well presented and poorly presented data. Construct draw and understand wo-way tables tally charts pictograms ertical line grap tem and leaf diagrams Pie charts population pyramids Choropleth maps Cumulative frequency graphs Histograms Frequency polygons Higher Construct draw and understand Comparative pie charts Histograms with unequal class widths widths	Foundation Calculate he mean, mode, median (including by interpolation) and range for a ist of numbers, and discrete and/or continuous data listed in a table. The minimum, lower quartile, median, upper quartile and maximum value of a list of numbers The interquartile range and the percentiles of a set of data Understand the advantages and disadvantages of each of the three measures of central tendency, and which is appropriate to use in different situations. Understand the effect of transformations on the mean, mode and median. Construct, use and interpret box plots from summary statistics and cumulative frequency graphs. Identify and interpret outliers by inspection and show them on box plots. Use box plots as a method to compare sets of data for dispersion, measures of central tendency and skewness. Given the median and interquartile range, make comparisons population data Identify simple properties of the shape of distributions of data including symmetry, positive and negative skew. Higher Calculate estimates of the median and mean from grouped data with unequal class widths and histograms. Calculate a geometric mean from a set of data Calculate a weighted mean from a set of data Calculate the standard deviation of a set of discrete data Calculate and estimate for the standard deviation of a set of grouped data. Identify outliers by calculation. Determines skewness by calculation.	Foundation Draw a scatter graph Describe and make comparisons of correlations Positive, negative or zero Strong or weak Understand what is meant by a causal relationship and that correlation does not imply causation Draw a line of best fit by eye and by drawing through the mean point. Use a line of best fit to make predictions within and outside the data range. Understand and comment on the reliability of values found through interpolation and extrapolation Interpret Spearman's rank coefficient Find the equation of a line of best fit Draw a regression line on a scatter, given the equation Interpret the value of the gradient of a regression line. Calculate Spearman's rank Interpret Pearsons's product-moment correlation coefficient. Understand the distinction between Spearman's rank correlation coefficient and Pearson's product-moment coefficient.	Foundation Draw and interpret line graphs and time series Draw trend lines on a time series graph and use inspection to identify trends. Know that a trend line shows the general trend of data. Interpret rising, falling and level trends on a time series graph. dentify seasonal variation on a ime series graph. average Draw a trend line through moving average by eye Higher Calculate the estimated mean seasonal variation Know that the predicted value =trend line + seasonal variation	Foundation Understand the meaning of the words impossible, certain, very and evens. Use fractions, decimals and decimals and percentages to represent probabilities. Use probability values to calculate expected frequencies and compare them with actual frequencies Use probability to assess risk Use sample space diagrams, Venn diagrams and tree diagrams to represent all the different outcomes possible for up to three events nderstand the terms mutually exclusive and exhaustive $P(A)+P(B)$ for two $B)=$ exclusive events nderstand what it means b for two events to be independent events. Use the multiplication laws for independent events. Understand what it means for Calculate conditional probability using a tree diagram, two-way able or venn diagram Use the formula for conditional probability. Know that for independent events A and $B, P(A)=P(A / B)$ Higher Use the general addition law of events that are not mutually exclusive	Higher Know the conditions for a Binomial distribution to be a suitable model. Understand the notation B(n.p) Calculate probabilities using the binomial distribution Know the mean of a \binomial distribution is $n p$ Know the conditions for a normal distribution to be a suitable model Understand the notation (XX) Know the shape of a normal occurs. Know that 68\% of data lies within one standard deviation of the mean, 95% of data lies within two standard deviations of the mean and 99.8\% lies within three standard deviations of the mean. Draw normal distribution curves including two curves on the same graph Use standardised scores to compare two samples of data. quality assurance and why it is Calculate warning limits and action limits for means Draw warning limits and action limits on a control chart for means, medians or ranges and action limits are used in the manufacturing process. mans.	Foundation Calculate index numbers Interpret index numbers including retail price index (RPI) and consumer price index (CPI) Interpret GDP values alculate the time, including crude birth and death rates Higher Calculate standardised birth and death rates index numbers. Calculate chain base index numbers.	Daprell
Concepts	Data is crucial to the way our lives work - From communicating and trial new medicines Statistics is all about using data to find answers to questions. statistics. The first step in any statistical investigation is to pose the question. What are we trying you find the answer?	It often isn't possible to spot patterns just by looking at raw data, especially larger sets. Careful processing of data can representation can make the spotting of patterns easier, supporting the drawing of appropriate conclusions. The diagrams will also make the data more accessible to a wider audience.	Why do people collect data? To draw conclusions. Analysing events that have already happened can give you a good idea of what may appen in the future. For example, a goven the likelihood of criminal activity in a particular area by analysing the frequency of previous crimes, assisting in the allocation of resources. and make decisions for the future.	If you walk or climb a mountain you will find it gets colder as you relationship or correlation between the height above sea level and the air temperature. and measures of correlation to investigate this relationship. To investigate cause and effect and been measured	Statisticians often look at patterns and behaviours over change scientists look back at evidence stretching back over a long time period. Using evidence from multiple sources they are then able to estimate historical temperature, identify long term trends and make informed predictions of the future. The same process can use shorter-term data to look at fluctuations in seasonal events and isolate and identify longer-term trends where they exist.	Do you know your chance of winning a game of chance? Will your train arrive today? Statisticians can predict what is likely to happen in games and other events using probability They also look at more serious issues, such as predicting potential health problems based on genetics or the likely demand for medical services in a particular area of the country.	Factory managers know that if machinery breaks down it can cause major disruption. The binomial distribution can help breakdown and plan accordingly When you buy a packet of crisps you expect them to contain the correct weight. How can a they are all correct without weighing every single packet? Instead, they use sampling and control charts ti ensure that acceptable tolerances.	The population of every country is constantly changing. Not just in size but in age gender ethnicity and geographic distribution as well. The same is true of the financial world, with average incomes and cost of living fluctuating all the time. and rates of change formulae to make sense of our ever-changing world.	
	\geq		$>$	$>$		\geq		$>$	

